Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-846197.v1

ABSTRACT

​​Since its recent zoonotic spill-over severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is constantly adapting to the human host as illustrated by the emergence of variants of concern with increased transmissibility and immune evasion. Prolonged replication in immunosuppressed individuals and evasion from spike-specific antibodies is known to drive intra-host SARS-CoV-2 evolution. Here we show for the first time the major role of CD8 T cells in SARS-CoV-2 evolution. In a patient with chronic, ultimately fatal infection, we observed three spike mutations that prevented neutralisation by convalescent plasma therapy. Moreover, at least four mutations in non-spike proteins emerged that hampered CD8 T-cell recognition of mutant epitopes, two of these occurred before spike mutations. A comparison with worldwide sequencing data showed that several of these T-cell escape mutations had emerged independently as homoplasies in multiple circulating lineages. We propose that human leukocyte antigen class I contributes to shaping the evolutionary landscape of SARS-CoV-2.


Subject(s)
Coronavirus Infections
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.20.21260845

ABSTRACT

ABSTRACT T cell immunity is crucial for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and has been widely characterized on a quantitative level. In contrast, the quality of such T cell responses has been poorly investigated, in particular in the case of CD8 + T cells. Here, we explored the quality of SARS-CoV-2-specific CD8 + T cell responses in individuals who recovered from mild symptomatic infections, through which protective immunity should develop, by functional characterization of their T cell receptor (TCR) repertoire. CD8 + T cell responses specific for SARS-CoV-2-derived epitopes were low in frequency but could be detected robustly early as well as late - up to twelve months - after infection. A pool of immunodominant epitopes, which accurately identified previous SARS-CoV-2 infections, was used to isolate TCRs specific for epitopes restricted by common HLA class I molecules. TCR-engineered T cells showed heterogeneous functional avidity and cytotoxicity towards virus-infected target cells. High TCR functionality correlated with gene signatures of T cell function and activation that, remarkably, could be retrieved for each epitope:HLA combination and patient analyzed. Overall, our data demonstrate that highly functional HLA class I TCRs are recruited and maintained upon mild SARS-CoV-2 infection. Such validated epitopes and TCRs could become valuable tools for the development of diagnostic tests determining the quality of SARS-CoV-2-specific CD8 + T cell immunity, and thereby investigating correlates of protection, as well as to restore functional immunity through therapeutic transfer of TCR-engineered T cells.


Subject(s)
COVID-19 , Coronavirus Infections , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL